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A compact description of the evolution of a many-body quantum system, e.g., a dilute gas, is
provided by the generalization of the usual reaction U matrix to a system U matrix. Using this
tool, it is demonstrated that in such systems (i) time-reversal-invariant states are unstable and
cannot exist in nature or be “constructed in the laboratory;” (ii) the time-reversal invariance of the
Hamiltonian leads inexorably to relaxation towards thermal equilibrium of arbitrary nonequilibrium
states, i.e., to dissipation, which thus allows the definition of a quantum arrow of time; (iii) the
second law of thermodynamics, and hence the complete field of thermodynamics, is a consequence
of quantum physics. These results have at their basis the Hermiticity of the Hamiltonian and the

Heisenberg uncertainty relations.
PACS number(s): 05.30.—d, 05.70.—a

I. INTRODUCTION

Macroscopic quantum systems not at thermal equilib-
rium, for example, a well-insulated glass of hot water
with an ice cube in it, certainly thermalize, i.e., exhibit
dissipation. In quantum physics the motion of the sys-
tem is governed by a Hamiltonian that is time-reversal
invariant and the spectrum of the system may be discrete.
On the surface, time-reversal-invariant equations of mo-
tion and time-directed evolution, i.e., dissipation, seem
contradictory. However, a symmetry of the Hamiltonian
does not imply that all states of the system will exhibit
that symmetry; still, time-reversal-invariant states must
actually exist. We will identify all these states that turn
out to be also time-displacement invariant and demon-
strate that all other states do exhibit dissipation. We also
will demonstrate that the time-reversal-invariant states
not only are highly improbable, as is generally accepted
[1], but, more strongly, cannot exist in nature in prin-
ciple; they will be shown to have probability measure
zero. The underlying reason for this will be seen to be
the Heisenberg uncertainty relation.

For simplicity and for conceptual transparency, we
shall investigate the case of a dilute gas. Depending on
the system, it could consist of atoms, molecules, phonons,
quasiparticles, etc. In such a gas the dynamics consists
mostly of a succession of two-body interactions; it can be
described by a cluster expansion. Thus, in preparation
for the treatment of the many-body system we begin the
development in Sec. II by discussing the case of two-body
scattering, principally to fix the notation and to intro-
duce the method of our treatment, which is based on
the Tomonaga-Schwinger evolution operator, the U ma-
trix. In particular, we identify the time-reversal-invariant
states as the eigenstates of the U matrix.

Treating the time evolution of the many-body quan-
tum system by means of the Tomonaga-Schwinger equa-
tion leads to the U matrix describing the evolution of
the complete system, which we denote as “the system
U matrix.” We now identify the time-reversal-invariant
states of the system as the eigenstates of the system U
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matrix. We then show that all the other states exhibit
a characteristic that can be loosely denoted as “infinite
Poincaré time.” This characteristic is essential for, but
in itself does not imply, dissipation, i.e., relaxation. The
central result of Sec. II is that the exceptional states, viz.,
the time-reversal-invariant states, cannot exist in nature
as they have probability measure zero. That this indeed
is the basis for the existence of dissipation in quantum
physics is explained in Sec. III. (Of course, the fact that
one can write down formally mathematical expressions
for the exceptional states is of no importance; it does not
make them realizable.)

The essential point of this paper is the demonstration
that every possible state of a quantum system undergoes
relaxation, i.e., exhibits the effect of dissipation, simply
as the consequence of its evolution being governed by
quantum dynamics. This is done in Sec. III. In detail,
we will demonstrate that the state of the system evolves
toward equal occupation probability for the accessible
phase space cells. This way the axiom of statistical ther-
modynamics, viz., the assumption of equal a priori prob-
ability for the occupation of the phase space cells at ther-
mal equilibrium, turns out to be a consequence of the
quantum physics evolution. Hence all results of statisti-
cal thermodynamics turn out to be correct; in particular,
the second law of thermodynamics is fulfilled.

It is now easy to define an expression for the entropy
in terms of quantum physics variables. This is done
in Sec. IV. Being part of quantum physics, this defini-
tion allows the evaluation of the entropy for arbitrarily
off-equilibrium situations. At the same time the entropy
can be used to define the arrow of time in nonequilibrium
systems. No arrow of time can be defined in systems at
equilibrium.

Some mathematical details concerning zero measure
as needed in the present paper are collected in the Ap-
pendix. A discussion of the physical interpretation of
zero measure is also given.

We now summarize the logical chain of steps leading
to the conclusions of the paper. (i) Owing to the time-
reversal invariance of the Hamiltonian, time-reversal-
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invariant states must exist. A “physical” scattering state
has an incoming wave in one channel and outgoing waves
in all channels. The time-reversed state has phase- and
amplitude-related incoming waves in all channels and an
outgoing wave in one channel. The time-reversed phys-
ical state is unstable in that any change, even only in
one of the incoming waves, leads to outgoing waves in
all channels. (ii) We identify the time-reversal-invariant
states as the eigenstates of the system U matrix; for an
N x N U matrix there are exactly N such states. We
show that linear combinations of these eigenstates are
not time-reversal invariant; more specifically, such lin-
ear combinations are nonperiodic. (iii) In the language
of mathematics, the time-reversal symmetric and the
time-reversal-invariant states and also the time-reversed
physical states have probability measure zero; this means
that they do not exist in nature and also cannot be gener-
ated “in the laboratory.” (iv) In the last step we demon-
strate that all physically possible states evolve toward
uniform density in phase space, which is known to be the
characteristic of thermal equilibrium. This thus demon-
strates that the axiom of equipartition of classical physics
is a consequence in quantum physics. The two main re-
sults of this paper are that it is in principle impossible
to actually construct time-reversed states and all possible
states evolve toward uniform occupation of the accessible
phase space.

II. TIME-REVERSAL-INVARIANT STATES

Since the Hamiltonian (by assumption) is time-reversal
invariant, then for any solution of the equations of mo-
tion, say, ¥(t), which does not have to be an eigenstate
of the Hamiltonian, the time-reversed state ¢(¢) reached
from the original state 1(t) by the time-reversal transfor-
mation ¢(t) = [¢(—t)]* is also a solution. Consequently

N B(t) = (t) + ¢(t) (1)

(N is a normalization constant) is also a solution. This
state is time-reversal symmetric in that it allows the re-
flection in time with respect to ¢ = 0. Our first task is to
identify not only the time-reversal symmetric states but
also the time-reversal-invariant states; then we will show
that both these kinds of states do not exist in nature
and why — even though, evidently, they are formally
possible, i.e., the appropriate expressions can be written
down. We shall derive our results by studying the evolu-
tion of a dilute gas. Since the dynamics of that system
can be described by a sequence of two-body interactions,
we shall first recall the evolution in time of an isolated
two-body collision and then tackle the case of the dilute
gas.

The prototype elastic two-body scattering system at
energy FE is described as consisting in the asymptotic
region of an incoming plane wave and an outgoing spher-
ical wave. This description has two related difficulties:
the waves fill all space and generate unphysical interfer-
ence patterns and there is no before or after the collision:
they collide all the time [2]. The system is delocalized in
space and time.
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To avoid these difficulties we shall employ the Weyl
eigendifferential method, which can be used to discretize
any continuous spectrum. The Weyl eigendifferential
states are defined as [3]

Ep+e
Uy (EBr;z,t) =N dE ¥ (E;z,t), (2)
Ep—e
where the limit € — 0 yields the é-function normalization
(¥(E)|¥(E'")) = 6(E—E’). We shall use the more general
case of € small; in (2), N is the normalization constant.

The Weyl states have several useful characteristics:
they are as close to being eigenstates of the Hamiltonian
as can be while being localized in space and time; the
original continuous spectrum has been discretized, i.e.,
the number of Weyl states is denumerably infinite and
thus only summations and not integrations are encoun-
tered; they are Kronecker orthonormal; they have simple
mathematical properties; and they are minimum uncer-
tainty wave packets and can be directly used to define the
phase space cells. Indeed, replacing in the wave function
¥ of Eq. (2) the coordinate = by x — z;, then in the clas-
sification of phase space the indices k and ! play the roles
of the commonly used coordinates p and g, respectively.
We shall use this labeling of the phase space. Also, in
our development we will not need the more general de-
scription by density matrices, which would be needed if
impure, i.e., mixed, states were required [4].

Now let ¥U(E) be the complete wave function of our
two-body system, i.e., it includes all channels and the
actual collision region. Then, using Weyl states, one can
achieve that for large negative t the colliding systems in a
physical scattering state are far apart — they are in the
asymptotic in-states — and they are approaching each
other; at t = 0 they collide and at positive ¢ the reac-
tion products fly apart (they are then in the asymptotic
out-states). A time-reversal-symmetric Weyl scattering
state, constructed from this physical state according to
Eq. (1), at t < 0 would have in addition to the original
asymptotic incoming state, in which the colliding parti-
cles approach each other in the input channel, also the
time-reversed original outgoing state, i.e., particles ap-
proaching each other in the original asymptotic output
channels, all of them to meet at ¢ = 0 at the origin. All
these components must be phase and amplitude related.
As we will see below, for any system that has more than
one open channel the time-reversed physical states can-
not be realized in the laboratory; they have probability
measure zero (see the Appendix).

Since in Weyl states the collision partners at t = —oo
are infinitely far apart and do not interact, the inner
structure (e.g., the self-energy) of each of the colliding
partners can be computed (prediagonalized) without in-
terference by the other partner. (Actually t = —oco is not
required; the collision partners only must be sufficiently
far apart so as to render their mutual interaction negli-
gibly small; see below.) We shall employ as asymptotic
states such prediagonalized states. Thus the incoming
particles may be atoms or molecules, etc., in some well-
defined states, not necessarily in the ground states. We
shall denote the representation constructed with these
states as “the asymptotic representation.” This is in con-
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trast to the “full state representation,” for which the
states are the full wave functions of the colliding system,
each of which encompasses the incoming and all the out-
going waves and also the reaction volume. Hence, given
the initial state in terms of the asymptotic states, then
the final state, again in terms of the asymptotic states, is
computed exactly by multiplying the state vector of the
initial state by the S matrix or by the U matrix if the
starting point is at some finite time [5]. The difference
between these two forms is that the U matrix contains
the closed channels, i.e., the channels that contain off-
the-mass-shell particles, while the S matrix ignores them.
Since the closed channels decrease in amplitude exponen-
tially as the systems move apart, the difference between
the elements of the U and the S matrix is important only
very close to the actual collision. For larger separation
distances the elements of the S matrix and the U matrix
have the same value. Also, only stable states can be used
in the S matrix formalism since it is defined as the limit
t = —oo; since the U matrix is defined with finite times
the required quasiasymptotic states can contain decaying
states. Which lifetimes are acceptable for these decay-
ing states then is determined by the time constants of
the considered system. The U matrix can be defined to
encompass the spreading of the (minimum uncertainty)
Weyl packets.

In describing a many-body system we shall use
as asymptotic states Weyl packets of products of
single-particle states that are (delocalized) eigenstates
(or quasieigenstates for the above mentioned decaying
states) of the Hamiltonian, i.e., where the internal struc-
ture has been fully treated.

Let us now discuss the general characteristics of a two-
body collision. We will see below that mutatis mutandis
they hold also for many-body systems. In hyperspher-
ical coordinates [6] that contain only one radial coor-
dinate, for a given (non-Weyl) state of definite energy
¥ (E), all channels ¢ asymptotically for r. — oo have the
form (omitting the angular and hyperangular parts)

djc = a, ei(kcrc—Ect) _ bc e—i(kcrc+Ect) . (3)

Here a. is the amplitude “before” and b. “after” the
collision. In general, the states have |a.| # |bc|, i-e.,
in a given channel ¢ the in-current is not equal to the
out-current; thus they are not time-reversal invariant.
There do exist time-reversal-invariant states, viz., the
eigenchannel states [7], which are the eigenstates of the
U matrix. In an N x N U matrix there are N such
states. Since the eigenchannel states form a complete set
of states, any state, for example, a physical scattering
state, can be written as a superposition of eigenchannel
states. In general, all N eigenchannel states are needed
for this superposition.

For a system in a pure eigenchannel state there holds
(the index n denotes the eigenchannel)

b=Ua=e2%mq (4)
or, in detail,
b = al™ =% (5)

[Being unitary, the U matrix must have eigenvalues of
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absolute value 1; hence the eigenvalues, as written in
Eq. (5), must have real eigenphases 7,,.] Thus the channel
functions are of the form

¢£n) — agn) e—i(Ect+77n) Sin(kcrc + 7]") H (6)

they have standing waves in all channels ¢, which evi-
dently is necessary for time-reversal invariance, and are
phase and amplitude related. The eigenchannel states are
delocalized continuum states. As we will see in a moment,
the pure eigenchannel states are the only time-reversal-
invariant states. Given a U matrix, the eigenchannel
wave function can be written down; in reality, however,
similarly as the time-reversed states, such states cannot
be constructed as they have probability measure zero.

We now describe the reasons for this observation. Con-
sider a given physical scattering state. Its time-reversed
state has an outgoing wave in exactly one channel. This
situation is, however, unstable, in that a change of the
amplitude even for only one of the incoming waves, say,
al. = a, + Aa,, will generate a solution containing outgo-
ing waves in all channels. (Owing to the normalization
condition, Aa, can only produce a rotation of a, in the
complex plane.) This change can be thought of as the
addition of a physical state that has its incoming wave in
channel 7 with amplitude Aa,; this then generates outgo-
ing waves in all channels. In the same way, changing the
amplitude only in one channel in an eigenchannel solution
will unbalance the in- versus the out-currents in all chan-
nels. The demonstration that the time-reversed physical
states and also the eigenchannel states have probabil-
ity measure zero is given in the Appendix. This in fact
is essential for the existence of dissipation in quantum
physics.

We now proceed to the many-body system. We take
the case of a dilute gas in a mathematically perfect box,
where as previously the particles are described by Weyl
states in the asymptotic-state representation. (The cir-
cumstance that in a box the spectrum is discrete makes
no difference since an immense number of such states
participate in a single Weyl state.) To describe the evo-
lution of this system it is useful to introduce the system
U matrix; it is defined similarly as the usual U matrix
in terms of the Tomonaga-Schwinger equation [5], where
the interaction-picture interaction is the sum of the indi-
vidual interactions between the collision partners. It is a
generalization of the familiar graph expansion methods
of many-body theory [8]. A more detailed discussion is
planned to be given in a separate paper [9]. The restric-
tion to a dilute gas leads to a substantial simplification
and to conceptual transparency of the problem since then
the evolution of the system can be treated in terms of the
cluster expansion, which can be visualized as a sequence
of two- or three-body collisions. This then can be used
to factorize the system U matrix into reaction U matri-
ces. Of course, this simplification is not essential for the
existence of a system U matrix; it only allows for easy
visualization.

We now return to our problem. If there are M par-
ticles in the box, the overall wave function is contained
in a 3M-dimensional finite configuration space; at fixed
total energy the phase space of the system is also finite
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and has, say, N cells. Then the overall system U ma-
trix, labeled by the system phase space cell indices, is
N x N;j it is sparse, but not disconnected. Except for
its size, it has all the same attributes as the U matrix
of a two-body system discussed above. In particular,
it allows for the definition of eigenchannel states, which
now concern the complete system. Again, these N eigen-
channel states are time-reversal invariant and, as we will
show below, are the only time-reversal-invariant states of
the system. Importantly, the remarks made above that
the time-reversal-invariant solutions for a two-body sys-
tem have probability measure zero thus apply also for a
many-body system.

We now give the promised demonstration that the
eigenchannel states are the only time-reversal-invariant
states. In the eigenchannel representation the U matrix
is diagonal with diagonal elements e~2*=_ In this repre-
sentation the state vector of the given eigenchannel, say,
N, is 0p,m. On the other hand, in the asymptotic state
representation the eigenchannel state has nonvanishing
amplitudes in all components. Each action of the U ma-
trix generates the “outgoing” wave (the state at time
t + 7) by multiplying each of the “incoming” wave com-
ponents (of the state at t) by the factor e~2" common
to all these components; see Eq. (4). The ratio of the
amplitudes thus is not altered by the “collision”; by def-
inition the system is in a stationary state. If, however,
only one more eigenchannel solution, say, m, is admixed,
then after the collision the amplitude in channel ¢ will be

be = a{™ e~ 4 (™) ¢~ %m (7)

Since in view of the orthogonality of the eigenchannels
in general the ratio aﬁ") / aﬁm) is different for the different
channels ¢, the state in the collision has undergone an
essential change. Furthermore, as long as (17, — 7m)/7
is not a rational number, the system will never return to
the state it occupied before the first collision. As demon-
strated in the Appendix, the probability measure of a
rational phase difference is zero. Hence the return time
is infinite; the states are nonperiodic. Admixing to our
two states of Eq. (7) further eigenchannel states does
not change the situation in any qualitative manner. Of
course, in that case there exist more relative phases, ir-
rational multiples of m, between the contributing eigen-
channel states; this then allows for greater variety of tra-
jectories in the asymptotic-representation Hilbert space.
Furthermore, the physically possible states in general are
linear combinations of all eigenchannel states.

More importantly, as also shown in the Appendix, even
individual eigenchannel states, the same as time-reversed
physical states, have probability measure zero. Hence
time-reversal-symmetric states constructed according to
Eq. (1) have probability measure zero.

Thus all physically possible states (i.e., states with
nonzero probability measure) are nonperiodic; the quan-
tum phase space trajectories are open. Considering the
spreading of the minimum-uncertainty wave packets, one
may say that all physically possible quantum states have
infinite “Poincaré time.”

To summarize the results of this section, we have
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shown that all time-reversal-invariant and time-reversal-
symmetric states have probability measure zero and
hence cannot exist in nature; they can be called “forbid-
den states.” Conversely, every possible, “allowed” state
in quantum physics has the character of no return, i.e.,
has infinite Poincaré time. This is one aspect needed for
dissipation. The elucidation of the other aspect, viz., the
determination of the state the system evolves into, will
be the subject of the next section. That state will turn
out to be the state of maximum entropy, i.e., a state in
thermal equilibrium. As we will see, the results of the
present section will turn out to be essential in arriving at
this result.

III. DISSIPATION

In the preceding section we have shown that it is im-
possible to construct in nature time-reversal-invariant
states and also time-reversed physical states, i.e., that
is impossible to implement the time-reversal transforma-
tion even though it is a mathematically fully defined op-
eration. The reason was shown to be the fact that such
states have probability measure zero. In the present sec-
tion we will show that all physically realizable initial
states evolve in time toward thermal equilibrium. We
conduct the discussion for the case of pure states, which
can be represented by a wave function. The simplifica-
tions that arise for impure states are mentioned toward
the end of this section.

The question we here address is the following: Starting
from some arbitrary allowed, i.e., realizable initial state,
what is the nature of the state the system evolves into?
To answer this question we derive a difference equation
for the time evolution of the system by investigating the
change induced in the system by the next collision, which
actually means the evolution of the system over a short
time step 7 = At. (The limit At — 0 would yield a
differential equation.) We describe this time evolution
as in Sec. II by means of the (N x N) system U ma-
trix, labeled as previously by the system phase space cell
indices.

Assume that before the considered time step, i.e., at
time ¢, the amplitudes of the system wave function in the
asymptotic representation are a;. Then the amplitudes
after the next time step are given by multiplication of the
original amplitudes by the system U matrix. Writing the
system U matrix as U = 1 + R, the amplitudes at time
t 4 7, written as a;, will be

=1+ Ry1) a1+ Rz az+Rizaz+---, (7a)
2 =Rz1 a1+ (1+ Ry2) az+ Rpzazg + -+, (7b)
l_ljszlal ...+(1+Rjj)aj oo+ Rigpap+ -,
(7c)
Gr=Rr1 a1 - +Reja;j+---+(1+ Rgk) a+ -+,
(7d)
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The elements Rjx, j # k, describe crossflow of probabil-
ity amplitudes between the cells 7 and k£ and the elements
R;; reflect the net inflow (or outflow) into cell j.

Take as the measure of pairwise nonuniformity for the
occupation of the phase space cells the expression

Ajk = |a;|® — |ax|? . (8)

From (7c) and (7d) we compute the change in the

nonuniformity (A after the collision)
Ajr — Aje = (1351 — lax|*) — (laj|* - lax|?)
= —|Rjx|® Aji + [Fie] + [G5] = [Gi] - (9)

This is the promised equation that describes the time
evolution of the nonuniformity Ajx. It is a first-order dif-
ference equation. Within the validity of the description
of the evolution by the system U matrix, this equation
is exact. Of course, it is not a new equation; it simply
reflects the dynamics of the Egs. (7) and allows visual-
ization of the evolution as given by those equations.

Since Eq. (9) is central to our development we shall
discuss its ingredients one at a time. Ignore for now the
terms [F] and [G]; we will return to them below. Then,
as is well known, the solutions of Eq. (9) are exponen-
tial functions that in view of the negative sign on the
right-hand side fall off as t — oco. Hence we have the im-
portant result that in the absence of the terms [F] and
[G] the nonuniformity Aj; relaxes exponentially toward
zero. This is true for every pair j, k for every physically
possible initial state.

In view of the results of Sec. II, the statements of
the preceding paragraph terminate the development. It
nonetheless is instructive to look as an illustration at the
difference between the mathematical time-reversal oper-
ation and its actually possible approximate implementa-
tion, i.e., to see how the impossibility of time-reversed
physical states as discussed in Sec. II manifests itself
in the solutions of Eq. (9). To wit, Eq. (9) of course
is form invariant under a time-reversal transformation,
i.e., the exchange ¢ — —t together with the exchange
U — Ut. In this time-reversed system the actually
later difference A]-k would be the “earlier” one. One
thus may be tempted to follow the evolution of the sys-
tem “forward” in this “new” time (actually backward in
time) and to conclude that it proceeds in the form of
derelaxation. However, this new state, ¢ in the terminol-
ogy of Eq. (1), involves the replacement of physical pro-
cesses by time-reversed physical processes. It is here that
the results of Sec. II are essential: as demonstrated there,
the time-reversed states of physical states have proba-
bility measure zero. That means that the time-reversal
operation that is mathematically well defined cannot be
implemented in nature; such a state cannot be realized.
At best, an approximate realization is possible. In de-
tail, the evolution of this approximate new “initial state”
toward derelaxation is unstable; owing to the inaccura-
cies in the amplitudes a} unavoidable in quantum physics
(e.g., Heisenberg uncertainties; see the Appendix) after a
short new time, the derelaxation will terminate and the
evolution will revert toward relaxation, precisely in terms
of this new time.

We now discuss the influence of the term [Fjz] of
Eq. (9) on the solutions. The developments of the pre-
ceding paragraph have bearing also on this discussion.
The term [Fji] contains the interference terms, which
are of the form [Rj,a,]*R,xar — Rsja;[Rera,]* and thus
are phase sensitive. They contain only off-diagonal ele-
ments of the density matrix. In a fully impure state the
term [F] vanishes and the nonuniformities Aj decay ex-
ponentially. Since interference terms in general do not
influence the overall process (for example, total reaction
cross sections) and for the reasons given in the preceding
paragraph, the terms contained in [F] can only induce
fluctuations and not secular effects. The terms [G;] are
diagonal in the state indices; their action is to maintain
the unitarity of the transformation, i.e., the normaliza-
tion of the state.

It is also informative to consider the case of an eigen-
channel state. There the amplitude squares |a;|?, and
thus also the differences Ajx, are constant in time; cf.
Eq. (5). For this to be true requires that the right-hand
side of Eq. (9) vanish exactly for all pairs j, k, which,
according to the Appendix, is not possible. This obser-
vation provides an alternative way to see that the time-
reversal-invariant states, i.e., the eigenchannel states,
have probability measure zero.

For any arbitrary initial state the time evolution of
both the fluctuations and the relaxation can be traced
by repeated matrix multiplication. This then is fully ex-
act as it represents one way of solving the time-dependent
Schrodinger equation. If a fully exact treatment is not
required, then, since exceptional states have been shown
not to exist, this matrix multiplication can be carried out
by statistical methods. One thus, at this point, arrives
at statistical (nonequilibrium) thermodynamics. This,
however, is totally irrelevant for the existence of dissipa-
tion as given by Eq. (9). Thus, if one so desires, one can
investigate special cases of interest in full exactness.

We now discuss our result. Recall (cf. Sec. II) that
the labels of the system U matrix denote the cells of the
overall combined system phase space. Thus the ampli-
tude a; is directly the occupation amplitude for phase
space cell j and thus the occupation probability for that
cell is |a;|2. Hence, even though the Hamiltonian is time-
reversal invariant, the dynamics of the system tends to
achieve equal a posteriori probability for the occupation
of the energetically accessible phase space cells. This is
simply the consequence of the no-return character (infi-
nite Poincaré time) of the evolution and of the nonzero
value of some Rji, together with the connectedness and
the unitarity, i.e., time-reversal invariance, of the U ma-
trix. This way our result obviates the need for the ax-
iom basic to equilibrium statistical thermodynamics [10],
which postulates equal a priori occupation probability of
the accessible phase space cells.

If the U matrix should turn out to be quasidiscon-
nected, then the equalization initially would take place
within each strongly connected piece of the U matrix.
A fully disconnected U matrix actually does not occur in
nature; what does occur is that by virtue of the smallness
of the relevant elements R;i, some parts of the U matrix
are only weakly connected to the rest of the U matrix.
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In that case the overall equalization of the occupation
probabilities would be slowed down; the overall system
very well might, and actually usually does, have a set of
different relaxation time constants, i.e., the system may
consist of more or less well-insulated subsystems.

The above discussion concerns a system described by a
wave function, for which the density matrix obeys p? = p.
For an impure state the off-diagonal terms of the den-
sity matrix have smaller values and hence the influence
of the fluctuation-inducing term [F] of Eq. (9) is dimin-
ished. Furthermore, as already mentioned, for fully im-
pure states having a purely diagonal density matrix the
term [F] is absent and the solution for ¢ — oo is unique,
i.e., Ajk — 0.

IV. QUANTUM ENTROPY

After the results of the previous sections it is not diffi-
cult to find a workable definition for the entropy in quan-
tum physics. To that end recall Boltzmann’s definition

S=—ijlnpj. (10)
J

In this expression the quantities p; are the classical prob-
abilities, arrived at by counting the available phase space
cells. To achieve the corresponding quantum physics ex-
pression one must replace in Eq. (10) the classical prob-
abilities by quantum probabilities, say, w;. Now, given
the amplitudes at ¢ = 0, ax(0), in the asymptotic Weyl
state representation, we have

w;(t) =Y ak(0) Ugi;(t) Ujk(t) ax(0),
P

(11)

which accounts for all possible interferences. If the initial
state is impure it can be specified only in term of its den-
sity matrix. Denoting it, again in the asymptotic Weyl
state representation, by w(0), Eq. (11) must be replaced
by

w;(t) =Y Ujn(t) wii(0) Ugj(t) - (12)
k

Since for large systems the quantum probabilities ap-
proach the classical probabilities, the definitions (10)-
(12) directly approach the Boltzmann entropy.

Finally, one can account for the selection of final states
by a measuring device by augmenting Eq. (10) by an ap-
propriate projection operator W, representing the mea-
surement or the filter used in the preparation of the state,
say, a Stern-Gerlach setup. This then yields

S=—Zijjlnwj. (13)
Fi

The projection operator can act as a “refrigerator”; the
filter may select a particular polarization, thus resulting
in a beam having the spin temperature T, =~ 0.

Now some remarks concerning the experimental deter-
mination of the entropy of a quantum system are in order.
Strictly, the thermodynamic quantities are defined only
for infinitely large systems. On the other hand, no such
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demands are visible in the definitions of this section, e.g.,
Eq. (13). Thus, given a table of data for a system, one
may evaluate the number S by means of Eq. (13). Also,
if one has tables for two times, one can determine the
time order by comparing the computed values of S, i.e.,
determine the “arrow of time.” This, of course, is possi-
ble only for nonequilibrium conditions; in equilibrium S
remains constant, except for fluctuations associated with
the noninfinite size of the system.

The definition (10) or (13) is given in terms of the
asymptotic states. It thus is applicable only for such
times where no collision is in progress. It is not possible
to generalize the definition so as to make it applicable
also during the time of a collision. The reason for that is
that the off-the-mass-shell states arising during the colli-
sion are given by propagators; they are not measurable.
One thus cannot ask precisely at which point “entropy is
produced” in the reaction. Only the entropy before and
after the reaction is defined.

The definition (10) or (13) must be distinguished from
the von Neumann definition

Son = —Tr(p In p), (14)

where p is the density matrix in the full-state represen-
tation (Sec. II). As is well known, S, is a constant of
the motion, i.e., does not change in time. A pure state
remains pure. Hence purity of the state seems not to
be a useful concept for defining the entropy in quantum
physics.

V. CONCLUSIONS

The central result of this paper is that quantum dy-
namics achieves directly relaxation toward a uniform oc-
cupation of the accessible phase space. Recall that all
results of statistical thermodynamics are arrived at by
axiomatically assuming for equilibrium equal a priori oc-
cupation probability of all accessible phase space cells
and evaluating the resulting probability by counting the
phase space cells. Our result shows that we have proven
the correctness of that axiom for quantum dynamics.
[Note that Eq. (9) concerns only the occupation probabil-
ities |a;x|?; the amplitudes still may contain phase rela-
tions, which, however, has no importance for our result.]
Hence, not only are the results of statistical thermody-
namics correct but even more strongly, we have proven
that statistical thermodynamics is a direct consequence
of quantum physics. In particular, one of these conse-
quences is the validity of the second law of thermodynam-
ics; it arises as a direct consequence of the time-reversal
invariance of the quantum physics Hamiltonian and the
equations of motion derived from this Hamiltonian. At
the same time this allows the definition of quantum en-
tropy. In view of the fact that the first law of thermody-
namics, being only the expression of energy conservation,
is contained in quantum physics, the overall conclusion is
that the field of thermodynamics, including dissipation,
is simply part of quantum physics.

In this whole discussion the question of measurement
in quantum physics did not arise and did not have to be
addressed. Measurement evidently is irrelevant to the ex-
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istence of dissipation. In particular, the well-known col-
lapse of the wave function plays no role here. This is not
to say that an analysis of the measurement process for a
many-body system is of no interest; to the contrary, it is
very worthwhile to give a careful discussion of that prob-
lem [11-13], in particular in the context of the definition
of the observables representing the microscopic thermo-
dynamic variables. Simply, it lies outside of the frame
of the present paper. In our development no questions
of general relativity, e.g., the expansion of the universe,
have been addressed; we only note that dissipation does
not depend on this expansion.

In summary, we have shown that in quantum physics
thermalization, i.e., dissipation, is an inevitable process;
all systems tend toward thermal equilibrium, while ex-
hibiting quantum fluctuations. As long as thermal equi-
librium has not been reached, the process of dissipation
allows the definition of the arrow of time. No arrow
of time can be defined for a system at thermal equilib-
rium. At that point the entropy, as defined in this paper,
reaches its maximum value.
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APPENDIX

Because of its central position in the developments of
this paper we collect here some aspects of the concept of
measure zero. To begin we address the question of the
probability measure of states with rational differences of
eigenphases. To that end define

z =m(n® —nW0). (A1)
The eigenphases are some regular, in general transcen-
dental, functions of the parameters of the Hamiltonian
and of the energy. In particular, they are not general-
ized functions, for example, § functions. Thus, except
for some special points, e.g., thresholds of reactions, in
its dependence on the energy the function z(F), Eq. (A1)
is regular, i.e.,

dzx
and
dzx
iE #0. (A3)
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'Consider now the normalization
N =/ F(E) dE . (A4)
In view of (A2) and (A3), Eq. (A4) can be replaced by

M:/G(m)dm.

Take any rational number z = P/Q (P and Q integers)
and compute its contribution to the integral (A5). To
that end integrate (A5) over the interval P — 0.5 <
Qzr < P+0.5:

(P+.5)/Q (P-e)/@
/ G(z) dz = lim / G(z) dx
(P—.5)/Q =0 | J(P-05)/Q

(P+0.5)/Q
+/ G(z) dz
(P+e)/Q

(P+e)/Q
+ / G(a) d b .
(

P—¢/Q

(A5)

(A6)

Since the integrand is regular at * = P/Q, the contri-
bution of the third integral vanishes in the limit. Thus
the contribution of the rational point P/Q and hence of
every rational point has probability measure zero.

In precisely the same manner one can demonstrate
that the contribution of any single number, rational, irra-
tional, or transcendental, has probability measure zero.
Similarly, a time-reversed physical state has probability
measure zero, as it requires the exact reproduction of
N — 1 in general complex numbers, and so does each
eigenchannel state.

The impossibility of constructing in nature a state with
exact values of its parameters follows from the Heisen-
berg uncertainty relation: it would take an infinite time
to construct two waves with an exact phase relation. In
some detail, the uncertainty with which the phase rela-
tion can be established decreases as 1/t, where t is the
setup time of the experiment. On the other hand, the
deviation from the desired behavior goes exponentially
with time; cf. Eq. (9). Hence one must conclude that it
is impossible in principle (not only in practice) to phys-
ically construct such a state and also that such states
cannot exist in nature. This is one example for the phys-
ical meaning of the mathematical concept “probability
measure zero.”

On the other hand, the construction of Weyl packets
has probability measure unity since it is stable against
changes of the weight function, say, fi(E), used in the
construction

V(o) =N [dB (B) Wm0, (AT
which does not have to be the “square wave” function
used in Eq. (2). A similar character has the construction
of a discrete state, which is a special case of Eq. (A7) with
fr(z) a perhaps very narrow resonance curve or even a
6 function.
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